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ABSTRACT 

Two types of previous iterative methods for solving the nonlinear balance equation (NBE) 

are revisited. In the first type, the NBE is rearranged into a linearized equation for a presumably 

small correction to the initial guess or the subsequent updated solution. In the second type, the 

NBE is rearranged into a quadratic form of the absolute vorticity with the positive root of this 

quadratic form used in the form of Poisson equation to solve NBE iteratively. The two methods 

are re-derived by expanding the solution asymptotically upon a small Rossby number, and a 

criterion for optimally truncating the asymptotic expansion is proposed to obtain the super-

asymptotic approximation of the solution. For each re-derived method, two iterative procedures 

are designed using the integral-form Poisson solver versus the over-relaxation scheme to solve 

the boundary value problem in each iteration. Tested with analytically formulated wavering jet 

flows on the synoptic, sub-synoptic and meso-a scales, the iterative procedure designed for the 

first method with the Poisson solver, named M1a, is found to be the most accurate and efficient. 

For the synoptic wavering jet flow in which the NBE is entirely elliptic, M1a is extremely 

accurate. For the sub-synoptic wavering jet flow in which the NBE is mostly elliptic, M1a is 

sufficiently accurate. For the meso-a wavering jet flow in which the NBE is partially 

hyperbolic so its boundary value problem becomes seriously ill-posed, M1a can effectively 

reduce the solution error for the cyclonically curved part of the wavering jet flow but not for 

the anti-cyclonically curved part. 

Keywords: nonlinear balance, iterative method, optimal truncation 
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44 Article Highlights: 

45 • Two previous iterative methods for solving the NBE are re-derived by expanding the 

46 solution asymptotically upon a small Rossby number Ro. 

47 • A criterion for optimal truncation of asymptotic expansion is proposed to obtain the super-

48 asymptotic approximation of the solution. 

49 • Using the integral-form Poisson solver for the boundary value problem in each iteration, 

50 optimally truncated solutions can be obtained efficiently with improved accuracies. 

51 • Solution errors can be reduced effectively even when Ro increases to 0.4 for cyclonically 

52 curved jet flows of meso-a scale. 
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1. Introduction 

For flows of synoptic and sub-synoptic scales in the middle and high latitudes, the 

nonlinear balance equation (NBE) links the streamfunction field with the geopotential field 

more accurately than the geostrophic balance (Charney, 1955; Bolin, 1955). However, solving 

the streamfunction from the NBE for a given geopotential field can be very challenging due to 

complicated issues on the existence of solution in conjunction with difficulties caused by 

nonlinearity (Courant and Hilbert, 1962). It is well known mathematically that the NBE is a 

special case of the Monge-Ampere differential equation for the streamfunction (Charney, 1955). 

If the geostrophic vorticity (that is, the vorticiy of geostrophic flow associated with the given 

geopotential field) is larger than -f/2 for a constant f where f is the Coriolis parameter, then the 

NBE is of the elliptic type and its associated boundary value problem can have no more than 

two solutions (see Section 6.3 in Chapter 4 of Courant and Hilbert, 1962). If the geostrophic 

vorticity is smaller than -f/2 in a local area, then the NBE becomes locally hyperbolic. In this 

case, the boundary value problem becomes ill-posed and thus may have no solution although 

the NBE can be integrated along the characteristic lines within the locally hyperbolic area (see 

Section 3 of Appendix I in Chapter 5 of Courant and Hilbert, 1962). 

To avoid the complication and difficulties caused by the local non-ellipticity in solving the 

NBE, one can simply enforce the ellipticity condition to a certain extent by slightly smoothing 

or adjusting the given geopotential field. This type of treatment has been commonly used in 

previously developed iterative methods to solve the NBE as a boundary value problem (Bolin, 

1955, 1956; Shuman, 1955, 1957; Miyakoda, 1956; Bushby and Huckle, 1956; Arnason, 1958; 
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Bring and Charasch, 1958; Liao and Chow, 1962; Asselin, 1967; Paegle and Tomlinson, 1975; 

Bijlsma and Hoogendoorn, 1983). However, regardless of the above treatment, the convergence 

properties of the previous iterative methods or any iterative methods can be not only scale-

dependent but also flow-dependent and thus very difficult to study theoretically and rigorously. 

The above reviewed previous iterative methods can be classified into two types. In the first 

type (originally proposed by Bolin, 1955), the NBE is transformed into a linearized equation 

for a presumably small correction to the initial guess or to the subsequent updated solution 

when this linearized equation is solved iteratively. In the second type (originally proposed by 

Shuman, 1955, 1957; Miyakoda, 1956), the NBE is rearranged into a quadratic form of the 

absolute vorticity and the positive root of this quadratic form is used in the form of Poisson 

equation to solve for the streamfunction iteratively. The initial guess for both types is the 

geostrophic streamfunction. Their convergence properties were analyzed theoretically, but the 

analysis was lack of rigor and generality, because the coefficients of linearized differential 

operator for the first type and the forcing terms on the right-hand side of the iterative form of 

linearized equation for the second type were functions of space but treated as constants 

(Arnason, 1958; Bijlsma and Hoogendoorn, 1983). Therefore the convergence properties of the 

previously iterative methods were examined mainly through numerical experiments. Besides, 

due to the very limited computer memories and speed in those early decades, the previous 

iterative methods employed the memory-saving sequential relaxation scheme based on the 

classical Liebmann-type iteration algorithm (Southwell, 1946) and applied to coarse resolution 

grids for large-scale flows. The sequential relaxation and successive over-relaxation (SOR) 
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schemes have been used in the second type of iterative method (Shuman, 1955, 1957) to solve 

the NBE for hurricane flows (Zhu et al., 2002). However, using the previous iterative methods 

to solve the NBE still faces various difficulties especially when the spatial scale reduces to and 

even below the sub-synoptic scale. In particular, there are unaddressed challenging issues 

concerning whether and how the solutions can be obtained approximately and efficiently 

through limited numbers of iterations, especially when the NBE becomes locally hyperbolic 

(due mainly to reduced spatial scales) and thus the iterative methods fail to converge. 

This paper aims to address the above concerned challenging issues. In particular, we will 

re-derive the above two types of iterative methods formally and systematically by expanding 

the solution asymptotically upon a small Rossby number and substituting it into the NBE. Since 

the asymptotic expansion is not ensured to converge especially when the Rossby number is not 

sufficiently small, the concept of optimal truncation of asymptotic expansion is employed and 

a criterion is proposed for optimal truncation to obtain the super-asymptotic approximation of 

the solution based on the heuristic theory of asymptotic analysis (Boyd, 1999). As will be seen 

in this paper, by employing the optimal truncation, the issue on non-convergence of the iterative 

methods caused by the increase of Rossby number can be addressed to a certain extent. Besides, 

the recently developed Poisson solver based on integral formulas (Xu et al., 2011; Cao and Xu, 

2011) will be used in comparison with the aforementioned classical SOR scheme to solve the 

boundary value problem in each iterative step. In particular, for flows of sub-synoptic scale or 

meso-a scale, the NBE can become locally hyperbolic and the solution will be checked in this 

paper via the proposed optimal truncation under certain conditions. 

6 



 

 
 

          

        

       

         

         

    

  

    

    

      

  

      

  

           

                

         

        

        

   

  

         

  

              

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

The paper is organized as follows. The next section presents formal and systematical 

derivations of the above reviewed two iterative methods. Section 2 formulates the criterion for 

optimal truncation, and section 3 constructs four different iterative procedures with optimal 

truncation and designs numerical experiments for testing the iterative procedures. Section 4 

examines and compares the results of experiments performed with the four iterative procedures, 

followed by conclusions in section 5. 

2. Derivations of two iterative methods 

2.1 Scaling and asymptotic expansion based on small Rossby number 

The NBE can be written into the following form (Charney, 1955): 

N(y) = Ñ2f, (1a) 

where N(y) º Ñ2y + (Ñy)×Ñf + 2Jxy(¶xy, ¶yy) = Ñ×(fÑy) + 2Jxy(¶xy, ¶yy) = Ñ2(fy) - Ñ×(yÑf) 

+ 2Jxy(¶xy, ¶yy), y is the streamfunction, f is the geopotential, Ñ º (¶x , ¶y), Ñ2 º Ñ×Ñ = ¶x 2 + 

¶y 2, and Jxy(¶xy, ¶yy) º (¶x 2y)(¶y 2y) - (¶x¶yy)2. For large-scale and synoptic-scale flows, the 

geostrophic approximation, Ñ2f ≈ Ñ2(fy), is the leading-order balance in (1a) and thus Ñ2(fy) 

is the dominant term in N(y). In this case, the boundary condition for solving y from (1a) over 

a middle-latitude domain D can be given by 

y = yg on ¶D, (1b) 

where ¶D denotes the domain boundary, and yg º f/f is the global geostrophic streamfunction 
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(Kuo, 1959; Charney and Stern, 1962; Schubert et al., 2009). 

Formally, we can scale x and y by L, scale f = fo + f’ by fo, and scale y and f by UL and 

foUL, respectively, where U is the horizontal velocity scale, L is the horizontal length scale, fo 

is a constant reference value of f which can be the value of f at the domain center. The scaled 

variables are still denoted by their respectively original symbols, so the NBE can have the 

following non-dimensional form: 

Ñ2(fy - f) = Ñ×(yÑf’) - Ro2Jxy(¶xy, ¶yy), (2) 

where Ro º U/foL is the Rossby number. For synoptic-scale and sub-synoptic-scale flows, the 

above scaling can give Ro = e < 1. Substituting this into (2) gives 

Ñ2(fy - f) = e[Ñ×(yÑF) - 2Jxy(¶xy, ¶yy)], (3) 

where F = f’/(foRo) ≤ O(1) and O( ) is the ‘order-of-magnitude’ symbol. Thus, y can have the 

following asymptotic expansion: 

y = y0 + ∑1ekdyk, (4) 

where y0 = yg and ∑1 denotes the summation over k from 1 to ¥. The kth order truncation of 

kek'the asymptotic expansion of y in (4) is given by yk º y0 + ∑1 dyk', where ∑1k denotes the 

summation over k' from 1 to k. Formally, y = yk + O(ek+1), so yk is accurate up to O(ek) as an 

approximation of y. 

By substituting (4) into (3) and (1b), and then collecting terms of the same order of e, we 
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obtain 

Ñ2(fdy1) = Ñ×(y0ÑF) - 2Jxy(¶xy0, ¶yy0), 

Ñ2(fdy2) = Ñ×(dy1ÑF) - 2[Jxy(¶xy0, ¶ydy1) + Jxy(¶xdy1, ¶yy0)], 

Ñ2(fdy3) = Ñ×(dy2ÑF) - 2[Jxy(¶xy0, ¶ydy2) + Jxy(¶xdy2, ¶yy0) + Jxy(¶xdy1, ¶ydy1)], 

Ñ2(fdy4) = Ñ×(dy3ÑF) - 2[Jxy(¶xy0, ¶ydy3) + Jxy(¶xdy3, ¶yy0) 

+ Jxy(¶xdy1, ¶ydy2) + Jxy(¶xdy2, ¶ydy1)], 

… 

Ñ2(fdyk+1) = Ñ×(dykÑF) - 2[Jxy(¶xy0, ¶ydyk) + Jxy(¶xddyk, ¶yy0) + Jxy(¶xdy1, ¶ydyk-1) 

+ Jxy(¶xdyk-1, ¶ydy1) + Jxy(¶xdy2, ¶ydyk-2) + Jxy(¶xdyk-2, ¶ydy2) + … ], 

... (5a) 

dyk = 0 on ¶D for k = 1, 2, 3, … (5b) 

Here, (5) gives a formal series of linearized equations and boundary conditions for computing 

dyk consecutively from dy1 to increasingly higher-order term in the expansion of y in (5). The 

equations in (5a), however, are inconvenient to use, because the equation at each given order 

becomes increasingly complex as the order k increases. It is thus desirable to modify (5a) into 

a recursive form, and this can be done non-uniquely by first combining the equations in (5a) 

with Ñ2(fy0) = Ñ2f into a series of equations for yk (instead of dyk) and then adding properly 

selected higher-order terms to the equation for yk at each order without affecting the order of 

accuracy of the equation. In particular, two different modifications will be made in the next 

two subsections. From these two modifications, the two types of iterative methods reviewed in 
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the introduction for solving the NBE can be derived formally and systematically via the 

asymptotic expansion of y in (4). 

2.2 Derivation of method-1 

The equations in (5a) can be combined with Ñ2(fy0) = Ñ2f at O(e0) into a series of equations 

for yk defined in (4) as shown blow: 

Ñ2(fy1) = Ñ2f + eÑ×(y0ÑF) - 2eJxy(¶xy0, ¶yy0), 

Ñ2(fy2) = Ñ2f + eÑ×(y1ÑF) - 2e[Jxy(¶xy0, ¶yy0) + eJxy(¶xy0, ¶ydy1) + eJxy(¶xdy1, ¶yy0)] 

= Ñ2f + eÑ×(y1ÑF) - 2e[Jxy(¶xy1, ¶yy1) - e2Jxy(¶xdy1, ¶ydy1)] 

= Ñ2f + eÑ×(y1ÑF) - e2Jxy(¶xy1, ¶yy1) + O(e3), 

Ñ2(fy3) = Ñ2f + eÑ×(y2ÑF) - 2e[Jxy(¶xy1, ¶yy1) + e2Jxy(¶xy0, ¶ydy2) + e2Jxy(¶xdy2, ¶yy0)] 

= Ñ2f + eÑ×(y2ÑF) - 2e[Jxy(¶xy1, ¶yy1) + e2Jxy(¶xy1, ¶ydy2) + e2Jxy(¶xdy2, ¶yy1) 

- e3Jxy(¶xdy1, ¶ydy2) - e3Jxy(¶xdy2, ¶ydy1)] 

= Ñ2f + eÑ×(y2ÑF) - 2e[Jxy(¶xy2, ¶yy2) - e3Jxy(¶xdy1, ¶ydy2) - e3Jxy(¶xdy2, ¶ydy1) 

- e4Jxy(¶xdy2, ¶ydy2)] 

= Ñ2f + eÑ×(y2ÑF) - 2eJxy(¶xy2, ¶yy2) + O(e4), 

… 

Ñ2(fyk) = Ñ2f + eÑ×(yk-1ÑF) - 2eJxy(¶xyk-1, ¶yyk-1) + O(ek+1), 

… (6) 

Formally yk is accurate up to O(ek) and so is Ñ2(fyk) on the left-hand side of the above kth 

equation. This implies that the kth equation is accurate only up to O(ek), so the last term O(ek+1) 
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(that represents all the high-order terms) on the right-hand side can be neglected without 

degrading the order of accuracy of the equation. This leads to the following recursive form of 

equation and boundary condition for solving the NBE iteratively: 

Ñ2(fyk) = Ñ2f + eÑ×(yk-1ÑF) - 2eJxy(¶xyk-1, ¶yyk-1), (7a) 

yk = yg on ¶D for k = 1, 2, 3, …. (7b) 

If e is sufficiently small to ensure the convergence of the asymptotic expansion in (5), then yk 

® y gives the solution of the NBE in the limit of k ®¥. 

Substituting eÑF = Ñf/fo and e = Ro º U/foL into (7) gives the dimensional form of (7): 

Ñ2(fyk) = Ñ2f + Ñ×(yk-1Ñf) - 2Jxy(¶xyk-1, ¶yyk-1), (8a) 

yk = yg on ¶D. (8b) 

For f = constant, (8a) recovers (5) of Bushby and Huckle (1956), but this recursive form of 

equation is derived here formally and systematically via the asymptotic expansion of the 

solution in (4). Substituting the dimensional form of yk = yk-1 + ekdyk, that is, yk = yk-1 + dyk 

into (8) gives 

Ñ2(fdyk) = Ñ2f - N(yk-1), (9a) 

dyk = 0 on ¶D for k = 1, 2, 3, … (9b) 

where N( ) is the nonlinear differential operator defined in (1a). Analytically, (9a) is identical 

to (8a) but expressed in an incremental form. Numerically, however, solving dyk from (9) and 
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updating yk-1 to yk = yk-1 + dyk iteratively does not give exactly the same solution as that 

obtained by solving yk from (8) iteratively. According to our additional numerical experiments 

(not shown), the solutions obtained from (8) are less accurate (by about an order of magnitude 

for the case of Ro = 0.1) than their counterpart solutions obtained from (9), so the non-

incremental form of boundary value problem in (8) will not be considered in this paper. 

2.3 Derivation of method-2 

The equation for yk in (7) can be multiplied by 2 and rewritten into 

2fÑ2yk = 2Ñ2f - 2e(ÑF)×Ñyk-1 - 4eJxy(¶xyk-1, ¶yyk-1) + O(ek+1), (10) 

where yk = yk-1 + ekdyk = yk-1 + O(ek) and Ñ2(fyk) = fzk + (Ñf)×Ñyk + Ñ×(ykÑf) = fzk + 

e(ÑF)×Ñyk + eÑ×(ykÑF) = fzk + e(ÑF)×(Ñyk-1) + eÑ×(yk-1ÑF) + O(ek+1) are used. One can verify 

that -4eJxy(¶xyk, ¶yyk) = e(zk2 - Ak2 - Bk2) = ezk2 - e(Ak-12 + Bk-12) + O(ek+1) where zk = Ñ2yk, Ak 

º (¶x 2 - ¶y 2)yk, Bk º 2¶x¶yyk, and Ak = (¶x 2 - ¶y 2)(yk-1 + ekdyk) = Ak-1 + O(ek) and Bk = 2¶x¶y(yk-

1 + ekdyk) = Bk-1 + O(ek) are used. Substituting these into (10) gives 

ezk2 + 2fzk + 2e(ÑF)×Ñyk-1 - 2Ñ2f - eAk-12 - eBk-12 = O(ek+1). 

This leads to the following recursive form of equation that is accurate up to O(ek): 

ezk2 + 2fzk + 2e(ÑF)×Ñyk-1 - 2Ñ2f - eAk-12 - eBk-12 = 0. (11a) 

Substituting eÑF = Ñf/fo and e = Ro º U/foL into (11a) gives its dimensional form which 
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can be rewritten into 

(f + zk)2 = Mk-1 º f2 + 2Ñ2f + Ak-12 + Bk-12 - 2(Ñf)×Ñyk-1. (11b) 

The non-negative condition of (f + zk)2 ≥ 0 requires Mk-1 ≥ 0 on the right-hand side of (11b). 

Also, as a quadratic equation of f + zk for given f and yk-1, (11b) has two roots, but only the 

positive root, given by f + zk = Mk-11/2, is physically acceptable (because f + zk ≥ 0 is required 

for stably balanced flow). This leads to the following recursive form of equation and boundary 

condition for solving the NBE iteratively: 

Ñ2yk = -f + Mk-11/2, (12a) 

yk = yg on ¶D for k = 1, 2, 3, …. (12b) 

where Mk-1 ≥ 0 is ensured by setting Mk-1 = 0 when the computed Mk-1 from the previous step 

becomes negative. Here, (12a) gives essentially the same recursive form of equation as that in 

(8) of Shuman (1957) for solving the NBE iteratively, but this recursive form of equation is 

derived here via the asymptotic expansion of the solution in (4). 

3. Iterative procedures with optimal truncation and experiment design 

3.1 Criterion for optimal truncation 

When the Rossby number is not sufficiently small to ensure the convergence of the 

asymptotic expansion, the optimal truncation of the asymptotic expansion of y in (4) can be 

determined (Boyd, 1999) by an empirical criterion in the following dimensional form: 
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E[N(yK)] = min E[N(yk)] for k = K, K ± 1, … K ± m, (13) 

where N( ) is the function form defined in (1a), K is the number of optimal truncation, E[N(yk)] 

º ||ε[N(yk)]||’, || ||’ denotes the root-mean-square (RMS) of discretized field of the variable 

inside || ||’ computed over all the interior grid points (excluding the boundary points) of domain 

D, and e[N(yk)] º [N(yk) - N(yt)]/||N(yt)||’ = [N(yk) - Ñ2f]/||Ñ2f||’ is the relative error of N(yk) 

with respect to N(yt) which is also the normalized (by ||Ñ2f||’) residual error of the NBE caused 

by the approximation of y ≈ yk, and yt denotes the true solution. Here, E[N(yK)] is expected 

to be the global minimum of E[N(yk)]. If E[N(yk)] does not oscillate as k increases, then it is 

sufficient to set m = 1 in (13). Otherwise, m should be sufficiently large to ensure E[N(yK)] be 

the global minimum of E[N(yk)]. 

3.2 Iterative procedures 

The iterative procedure for method-1 performs the following steps: 

1. Start from k = 0 and set y0 = yg º f/f in D and ¶D. 

2. Substitute yk-1 (= y0 for k = 1) into N(yk-1) to compute the right-hand-side of (9a), and then 

solve the boundary value problem in (9) for dyk. 

3. Substitute yk = yk-1 + adyk into ||N(yk) - Ñ2f||’ and save the computed ||N(yk) - Ñ2f||’ where 

a is an adjustable parameter in the range of 0 < a ≤ 1. 

4. If k ≥ 2m, then find min||N(yk’) - Ñ2f||’, say at k’ = K’, for k’ = k, k - 1, … k - 2m. If K’ < k -

m, then K = K’ and yK gives the optimally truncated solution – the final solution that ends the 

iteration. Otherwise, go back to step 2. 
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When the Poisson solver (or SOR scheme) is used to solve boundary value problem in the 

above step 2, the iterative procedure designed for method-1 is named M1a (or M1b). For the 

Poisson solver used in this paper, the internally induced solution is obtained by using the 

scheme S2 described in section 2.1 of Cao and Xu (2011) and the externally induced solution 

obtained by using the Cauchy integral method described in section 4.1 of Cao and Xu (2011). 

For M1a with Ro < 0.4 (or Ro = 0.4), it is sufficient to set m = 1 and a = 1 (or 1/2). For M1b, 

it is sufficient to set m = 3 and a = 1. 

The iterative procedure for method-2 performs the following steps: 

1. Start from k = 0 and set y0 = yg º f/f in D and ¶D. 

2. Substitute yk-1 into Mk-1 defined in (11b) to compute the right-hand-side of (12a), and then 

solve the boundary value problem in (12) for yk. 

3. Compute and save ||N(yk) - Ñ2f||’. 

4. Perform this step as described above for step 4 of method-1. 

When the Poisson solver (or SOR scheme) is used to solve boundary value problem in the 

above step 2, the iterative procedure designed for method-2 is named M2a (or M2b). For M2a 

and M2b, it is sufficient to set m = 1 and a = 1. 

3.3 Experiment design 

To examine and compare the accuracies and computational efficiencies of the four iterative 

procedures, the true streamfunction field is formulated for a wavering jet flow by 

yt = -0.5ULtanh[2y/L + 0.5cos(πx’/L)] (14) 
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and the associated velocity components are given by 

ut º -¶yyt = Usech2[2y/L + 0.5cos(πx’/L)] (15a) 

and vt º ¶xyt = 0.25πUsin(πx’/L)sech2[2y/L + 0.5cos(πx’/L)], (15b) 

where U = 20 ms-1 is the maximum zonal speed of the wavering jet flow, y = -0.25Lcos(πx’/L) 

is the longitudinal location (in y-coordinate) of the wavering jet axis as a function of x’ = x 

- x0, and x0 is the zonal location of wave ridge. By setting the half-wavelength L to 2000, 1000 

and 500 km, the flow fields formulated in (14) and (15) resemble wavering westerly jet flows 

on the synoptic, sub-synoptic and meso-a scales, respectively (as often observed on northern-

hemisphere mid-latitude 500 hPa weather maps). 

Four sets of experiments are designed to test and compare the iterative procedures with yt 

given in (14) over a square domain of D º [-L ≤ x ≤ L, -L ≤ y ≤ L]. The first set consists of four 

experiments to test the four iterative procedures (that is, M1a, M1b, M2a and M2b) on the 

synoptic scale by setting L = 2000 km and x0 = 0 for yt in (14). The second set also consists of 

four experiments but to test the four iterative procedures on the sub-synoptic scale by setting L 

= 1000 km and x0 = 0 for yt in (14). The third (or fourth) set still consists of four experiments 

to test the four iterative procedures on the meso-a scale by setting L = 500 km and x0 = 0 (or 

L) for yt in (14). Note that setting x0 = 0 (or L) places the ridge (or trough) of the wavering jet 

in the middle of domain D, so the nonlinearly balanced flow used for the tests in the third (or 

fourth) set is curved anti-cyclonically (or cyclonically) in the middle of domain D. For 

simplicity, the Coriolis parameter f is assumed to be constant and set to f = fo = 10-4 s-1 in all 
16 
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the experiments. The Rossby number, defined by Ro = U/foL, is thus 0.1, 0.2 and 0.4 for L = 

2000, 1000 and 500 km, respectively. 

The true geopotential field, f, is obtained by solving the Poisson equation, Ñ2f = N(yt), 

numerically on a 51´51 grid over domain D with the boundary condition given by f = fyt. In 

this case, yt in (14) is also discretized on the same 51´51 grid over the same square domain, 

and is used to compute the right-hand side of Ñ2f = N(yt) via standard finite-differencing. Then, 

f is solved numerically by using the Poisson solver of Cao and Xu (2011). The SOR scheme 

can be also used to solve for f, but the solution is generally less accurate than that obtained by 

using the Poisson solver. The NBE discretization error (scaled by ||Ñ2f||’) can be denoted and 

defined by 

E(Ñ2f) º ||Ñ2f - N(yt)||’/||Ñ2f||’. (16) 

This error is 3.25´10-3 (or 4.33´10-3) for f obtained by using the Poisson solver with L = 2000 

(or 1000) but increases to 5.58´10-3 (or 5.78´10-3) for f obtained by using the SOR scheme. 

Thus, the solution obtained by using the Poisson solver is used as the input field of f in the 

NBE to test the iterative procedures in each set of experiments. 

4. Results of experiments 

4.1 Results from first set of experiments 

For this set of experiments, yt and (ut, vt) are plotted in Fig. 1a, yg and (ug, vg) º (-¶yyg, 

¶xyg) are plotted in Fig. 1b, the vorticity zt º Ñ2yt is plotted in Fig. 1c, and the geostrophic 
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vorticity zg º Ñ2yg is plotted in Fig. 1d. Figure 1c shows that the absolute voticity, defined by 

f + zt, is positive everywhere so the nonlinearly balanced wavering jet flow is inertially stable 

over the entire domain (see the proof in Appendix C of Xu, 1994). Figure 1c shows that the 

geostrophic vorticity zg is larger than -f/2 (= -fo/2) everywhere, so the NBE is elliptic over the 

entire domain and its associated boundary value problem in (1) is well posed. 

The relative error of yk with respect to yt can be denoted and defined by 

e(yk) º (yk - yt)/||yt||, (17) 

where || || denotes the RMS of discretized field of the variable inside || || computed over all the 

grid points (including the boundary points) of domain D. The accuracy of the solution yk 

obtained during the iterative process in each experiment can be evaluated by the RMS of ε(yk), 

denoted and defined by 

E(yk) º ||ε(yk)||, (18) 

where || || is defined in (17). The accuracy to which the NBE is satisfied by yk can be measured 

by E[N(yk)] defined in (13). 

Table 1 lists the values of E(yk) and E[N(yk)] for the initial guess y0 (= yg) in row 1 and 

the optimally truncated solutions yK from the four experiments in rows 2-5. As shown in row 

2 versus row 1 of Table 1, M1a reaches the optimal truncation at k = K = 6 where E[N(yk)] is 

reduced (from 0.120 at k = 0) to its minimum [= 2.411´10-3 < E(Ñ2f) = 3.25´10-3 – the NBE 

discretization error defined in (16)] with E(yk) reduced (from 2.43´10-2 at k = 0) to 4.87´10-4. 
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Figure 2a shows that E(yk) reaches its minimum (= 4.79´10-4) at k = 10. This minimum is 

slightly below E(yK) = 4.87´10-4 but undetectable in real-case applications. 

On the contrary, as shown in row 3 of Table 1 and Fig. 2b, M1b reaches the optimal 

truncation very slowly at k = K = 38493 where E[N(yk)] is reduced to its global minimum (= 

1.81´10-2) with E(yk) reduced to 1.68´10-3. Here, E[N(yk)] has three extremely shallow and 

small local minima (at k = 32408, 38490 and 38497) not visible in Fig. 2b. These local minima 

are detected and passed by setting m = 3 in (13) for M1b. Clearly M1b is less accurate and 

much less efficient than M1a. 

Figure 2c (or 2d) shows that M2a (or M2b) reaches the optimal truncation at k = K = 19 (or 

26) where E[N(yk)] is reduced to its global minimum [= 3.55´10-2 (or 2.66´10-2)] with E(yk) 

reduced to 4.55´10-3 (or 2.69´10-3), and E(yk) decreases continuously toward its minimum [= 

2.45´10-3 (or 1.62´´10-3)] as k increases beyond K. Thus, M2a and M2b are less efficient and 

much less accurate than M1a for Ro = 0.1. 

4.2 Results from second set of experiments 

For this set of experiments, yt and (ut, vt) have the same patterns as those in Fig. 1a, and 

yg and (ug, vg) are similar to those in Fig. 1b, but the contour intervals of yt and yg are reduced 

by 50% as L is reduced from 2000 to 1000 km with Ro increased to 0.2, so the wavering jet 

flow is on the sub-synoptic scale. In this case, the nonlinearly balanced jet flow is still inertially 

stable over the entire domain since zt > -f everywhere as shown in Fig. 3a, but zg < -f/2 in the 

two small yellow colored areas as shown in Fig. 3b, so the NBE becomes hyperbolic locally in 

this small area and the boundary value problem in (1) is not fully well posed. 
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In this case, as shown in row 2 versus row 1 of Table 2, M1a reaches the optimal truncation 

at k = K = 13 where E[N(yk)] is reduced (from 0.243 at k = 0) to its minimum [= 5.23´10-3 

close to E(Ñ2f) = 4.33´10-3] with E(yk) reduced (from 4.86´10-2 at k = 0) to 1.24´10-3. The 

rapid descending processes of E(yk) and E[N(yk)] (not shown) are similar to those in Fig. 2a 

for M1a in the first set of experiments. 

As shown in row 3 of Table 2, M1b takes K = 48057 iterations to reach the optimal 

truncation and the values of E[N(yk)] and E(yk) at k = K are about four times larger than those 

from M1a. The extremely slow descending processes of E(yk) and E[N(yk)] (not shown) are 

similar to those in Fig. 2b for M1b in the first set of experiments. As shown in row 4 (or 5) of 

Table 2, M2a (or M2b) reaches the optimal truncation at k = K = 26 (or 35) and the values of 

E[N(yK)] and E(yK) are more than (or about) 4 times of those from M1a. Thus, M1a is still 

more accurate and much more efficient than M1b and is more efficient and much more accurate 

than M2a and M2b for Ro = 0.2, although the boundary value problem in (1) in this case is not 

fully (but nearly) well posed. 

4.3 Results from third set of experiments 

For this set of experiments, yt and (ut, vt) have the same patterns as those in Fig. 1a but the 

contour interval of yt is reduced 4 times as L is reduced from 2000 to 500 km with Ro increased 

to 0.4, so the wavering jet flow is on the meso-a scale. Figure 4a shows the fields of yg and 

(ug, vg) for the nonlinearly balanced jet flow. This nonlinearly balanced jet flow is inertially 

unstable in the yellow colored area south of the ridge of wavering jet axis in the middle of 

domain D where zt < -f as shown in Fig. 4c. Figure 4d shows that zg < -f/2 in the long and broad 
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yellow colored area along and around the wavering jet, so the NBE is hyperbolic in this area 

and the boundary value problem in (1) becomes seriously ill-posed. 

In this case, as shown in row 2 of Table 3 and Fig. 5a, M1a reaches the optimal truncation 

at k = K = 2 where E[N(yk)] is decreased (from 0.57 at k = 0) to its minimum (= 0.13), while 

E(yk) decreases from 9.72´10-2 at k = 0 to 8.20´10-2 at k = K = 2 and then to its minimum (= 

7.38´10-2) at k = 6. As k increases beyond 6, M1a diverges. Its optimally truncated solution yK 

is merely slightly more accurate than the initial guess y0. As shown in row 3 of Table 3 and 

Fig. 5b, M1b reaches the optimal truncation at k = K = 10325 where E[N(yk)] is decreased to 

its global minimum (= 0.15), while E(yk) decreases to 8.31´10-2 at k = K and then to its 

minimum (= 7.68´10-2) at k = 23515. Thus, M1b is still less accurate and much efficient than 

M1a. 

Figure 5c (or 5d) shows that M2a (or M2b) reaches the optimal truncation at k = K = 26 (or 

29) where E[N(yk)] is reduced to its minimum [= 0.11 (or 0.10)], while E(yk) is reduced to its 

minimum [= 8.24´10-2 (or 8.24´10-2)] at k = 25 (or 26) and then increases slightly to 8.25´10-

2 (or 8.26´10-2) at k = K = 26 (or 29). As shown in row 4 (or 5) versus row 2 of Table 3, E(yK) 

from M2a (or M2b) is larger than that from M1a, so M2a (or M2b) is still less accurate than 

M1a in this case. 

Figure 6a (or 6b) shows that ε(yK) from M1a (or M1b) peaks positively and negatively in 

the middle of domain D as ε(y0) does in Fig. 4b but with slightly reduced amplitudes. Figure 

6c (or 6d) shows that ε(yK) from M2a (or M2b) has a broad negative peak south of the ridge 

of wavering jet axis similar to that of ε(y0) in Fig. 4b but with a slightly enhanced amplitude. 
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In this case, M1a is still slightly more accurate than other three iterative procedures but it cannot 

effectively reduce the solution error in the central part of the domain where not only the NBE 

is hyperbolic (with zg < -f/2 as shown in Fig. 4d) but also the jet flow is strongly anti-

cyclonically curved and subject to inertial instability (with zt < -f as shown in Fig. 4c). 

4.4 Results from fourth set of experiments 

For this set of experiments, yt and (ut, vt) are plotted in Fig. 7a. These fields represent the 

same nonlinearly balanced wavering westerly jet flow as that in the third set of experiments 

except that the wave fields are shifted by a half of wavelength so the jet flow is curved 

cyclonically in the middle of domain D. In this case, yg and (ug, vg) are nearly the same as the 

half-wavelength shifted fields (not shown) from Fig. 4a but with small differences mainly along 

and around the trough and ridge lines due to the boundary condition, f º fyg = fyt, used here 

along the two trough lines (instead of the two ridge lines in Fig. 4a) for solving f from Ñ2f = 

N(yt). Figure 7c shows the jet flow becomes inertially unstable in the two yellow colored areas 

(where zt < -f) around the west and east boundaries of domain D. Figure 7d shows that the NBE 

becomes hyperbolic in the long and broad yellow colored area (where zg < -f/2) that is nearly 

the same as the yellow colored area in Fig. 4d but half-wavelength shifted, so the area of zg < 

-f (that is, the area of z0 + f < 0 in which the initial guess field is inertially unstable) in Fig. 4d 

is moved with the ridge line to the west and east boundaries in Fig. 7d. As the area of zg < -f 

and area of zt < -f are moved away from the domain center to the domain boundaries where yt 

is known and given by f/f, solving the NBE becomes less difficult in this fourth set of 

experiments than in the third set. 
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In this case, as shown in row 2 of Table 4 and Fig. 8a, M1a reaches the optimal truncation 

at k = K = 7 where E[N(yk)] is decreased (from 0.76 at k = 0) to its minimum (= 3.81´10-2), 

while E(yk) decreases from 9.71´10-2 at k = 0 to 2.29´10-2 at k = K = 7 and then to its flat 

minimum (= 2.25´10-2) at k = 12, so yK is significantly more accurate than y0 and slightly less 

accurate than yk at k = 12 (which is undetectable in real-case applications). As shown in row 3 

of Table 4 and Fig. 8b, M1b reaches the optimal truncation at k = K = 31830 where E[N(yk)] 

is decreased to its global minimum (= 4.54´10-2), while E(yk) decreases to 2.37´10-2 at k = K 

and then to its minimum (= 2.21´10-2) at k = 57586. Thus, M1b is still much less efficient and 

less accurate than M1a. 

Figure 8c (or 8d) shows that M2a (or M2b) reaches the optimal truncation at k = K = 27 (or 

32) where E[N(yk)] is reduced to its minimum [= 5.42´10-2 (or 4.66´10-2)], E(yk) reduces to 

3.03´10-2 (or 2.64´10-2) at k = K and then to its minimum [= 2.72´10-2 (or 2.43´10-2)] at k = 

36 (or 44), so M2a (or M2b) is still less efficient and less accurate than M1a in this case. 

Figure 7b shows that ε(y0) has a broad positive (or negative) peak south (or north) of the 

trough of wavering jet axis in the middle of domain D. These broad peaks are mostly reduced 

by M1a as shown by ε(yK) in Fig. 9a but slightly less reduced by M1b as shown in Fig. 9b and 

less reduced by M2a (or M2b) as shown in Fig. 9c (or 9d). However, the small secondary 

negative peak of ε(yg) near the west (or east) boundary in Fig. 7b is reduced only about 30% 

by M1a (or M1b) as shown by ε(yK) in Fig. 9a (or 9b) and even less reduced by M2a (or M2b) 

as shown in Fig. 9c (or 9d). Thus, all the four iterative procedures have difficulties to reduce 

the errors of their optimally truncated solutions near the west and east boundaries where not 
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only the NBE is hyperbolic (with zg < -f/2 as shown in Fig. 7d) but also the jet flow is subject 

to inertial instability (with zt < -f as shown in Fig. 7c). Nevertheless, since the area of zt < -f is 

moved with the ridge of wavering jet axis to the domain boundaries in Fig. 7c, all the four 

iterative procedures perform significantly better in this set of experiments than in the previous 

third set, as shown in Fig. 9 and Table 4 versus Fig. 6 and Table 3. In this case, M1a is still 

most accurate and M1b is still least efficient among the four iterative procedures. 

5. Conclusions 

In this paper, two types of previous iterative methods for solving the NBE are reviewed and 

revisited. The first type was originally proposed by Bolin (1955), in which the NBE is 

transformed into a linearized equation for a presumably small correction to the initial guess or 

the subsequently updated solution. The second type was originally proposed by Shuman (1955, 

1957) and Miyakoda (1956), in which the NBE is rearranged into a quadratic form of the 

absolute vorticity and the positive root of this quadratic form is used in the form of Poisson 

equation to obtain the solution iteratively. These two types of methods are re-derived formally 

by expanding the solution asymptotically upon a small Rossby number (see section 2), and the 

re-derived methods are called method-1 and method-2, respectively. 

Since the rearranged asymptotic expansion is not ensured to converge especially when the 

Rossby number is not sufficiently small, a criterion for optimal truncation of asymptotic 

expansion is proposed [see (13)] to obtain the super-asymptotic approximation of the solution 

based on the heuristic theory of asymptotic analysis (Boyd, 1999). In addition, the Poisson 
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solver based on the integral formulas (Xu et al., 2011; Cao and Xu, 2011) is used versus the 

SOR scheme to solve the boundary value problem in each iterative step. 

The four iterative procedures are tested with analytically formulated wavering jet flows on 

different spatial scales in four sets of experiments. The computational domain covers one full 

wavelength and is centered at the ridge of the wavering jet in the first three sets of experiments 

but centered at the trough in the last set. In the first set of experiments, the wavering jet flow is 

formulated on the synoptic scale [with the half wavelength L = 2000 km and the associated 

Rossby number Ro = 0.1]. In this case, the NBE is of the elliptic type over the entire domain 

and therefore its boundary value problem is well posed. In the second set of experiments, the 

wavering jet flow is formulated on the sub-synoptic scale [with L = 1000 km and Ro = 0.2]. In 

this case, the NBE is of the elliptic type nearly over the entire domain so that its boundary value 

problem is nearly well posed. In the third (or fourth) set of experiments, the wavering jet flow 

is formulated on the meso-a scale with Ro = 0.4, the wavering jet flow is curved anti-

cyclonically (or cyclonically) in the middle of the domain where the absolute vorticity is locally 

negative (or strongly positive), and the NBE becomes hyperbolic broadly along and around the 

wavering jet so that its boundary value problem is seriously ill-posed. 

The test results can be summarized as follows: For wavering jet flows on the synoptic and 

sub-synoptic scales, all the four iterative procedures can reach their respective optimal 

truncations and the solution error (originally from the initial guess – the geostrophic 

streamfunction) can be reduced at the optimal truncation by an order of magnitude or nearly so 

even when the NBE is not entirely elliptic. Among the four iterative procedures, M1a is most 
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accurate and efficient while M1b is least efficient. The results for wavering jet flows on the 

synoptic and sub-synoptic scales are insensitive to the location of wavering jet in the 

computational domain. In particular, according to our additional experiments (not shown in 

this paper), when the wavering jet is shifted zonally by a half of wavelength (with the trough 

moved to the domain center), the solution errors become slightly smaller and the optimal 

truncation numbers for M1a and M1b (or M2a and M2b) become slightly smaller (or larger) 

than those listed in Tables 1 and 2. For wavering jet flows on the meso-a scale in which the 

NBE’s boundary value problem is seriously ill-posed, the four iterative procedures still can 

reach their respective optimal truncations with the solution error reduced effectively for 

cyclonically curved part of the wavering jet flow but not for the anti-cyclonically curved part. 

In this case, M1a is still most accurate and efficient while M1b is least efficient. 

In comparison with M1b, the high accuracy and efficiency of M1a can be explained by the 

fact that the solution obtained by the Poisson solver based on the integral formulas is not only 

more accurate but also smoother than the solution obtained by the SOR scheme in each step of 

nonlinear iteration. Consequently, in each next step, the nonlinear differential term on the right-

hand side of the incremental-form iteration equation [see (9a)] is computed more accurately in 

M1a than in M1b and so is the entire right-hand side. This is especially true and important 

when the entire right-hand side becomes very small (toward zero) in the late stage of iterations, 

as it also explains why M1b reaches the optimal truncation much slower than M1a (see Tables 

1–4). In comparison with M2a and M2b, the high accuracy and efficiency of M1a can be 

explained by the fact that the solution in M1a is updated incrementally and the increment is 
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small relative to the entire solution and so is the error of the increment computed in each step 

of nonlinear iteration. On the other hand, the solution in M2a or M2b is updated entirely and 

the entire solution is large relative to the increment and so is the error of the entire solution 

computed in each step of nonlinear iteration. Moreover, the recursive form of equation [see 

(12)] used by M2a and M2b contains a square root term on its right-hand side, so it cannot be 

converted into an incremental form. Furthermore, this square root term must set to zero when 

the term inside the square root becomes negative, although the term inside the square root 

corresponds to the squared absolute vorticity. This problem is caused by the non-negative 

absolute vorticity assumed in the derivation of the recursive form of equation for M2a and M2b. 

Cyclonically curved meso-a scale jet flows in the middle and upper troposphere are often 

precursors of severe weather especially when the curved jet flow evolves into a cut-off cyclone 

atop a meso-a scale low pressure system in the lower troposphere. In this case, M1a can be 

potentially and particularly useful for severe weather analyses in the context of semi-balanced 

dynamics (Xu, 1994; Xu and Cao, 2012). In addition, since the mass fields can be estimated 

from Advanced Microwave Sounding Unit (AMSU) observations, using the NBE to retrieve 

the horizontal winds in and around tropical cyclones (TC) from the estimated mass fields have 

potentially important applications for TC warnings and improving TC initial conditions in 

numerical predictions (Velden and Smith, 1983; Bessho et al, 2006). Applications of M1a in 

the aforementioned directions deserve continued studies. In particular, the gradient wind can 

be easily computed for the axi-symmetric part of a cut-off cyclone (or TC) and used to improve 

the initial guess for the iterative procedure. This use of gradient wind can be somewhat similar 
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to the use of gradient wind associated with the axisymmetric part of a hurricane to improve the 

basic-state potential vorticity (PV) construction for hurricane PV diagnoses (Wang and Zhang, 

2003; Kieu and Zhang, 2010). Furthermore, either the gradient wind or the optimal truncated 

solution from M1a can be used as a new improved initial guess. In this case, the asymptotic 

expansion can be reformulated upon a new small parameter associated with the reduced error 

of the new initial guess and this new small parameter can be smaller or much smaller than the 

Rossby number used for the asymptotic expansion in this paper. The reformulated asymptotic 

expansion may be truncated to yield a more accurate ‘hyperasymptotic’ approximation of the 

solution according to the heuristic theory of asymptotic analysis (see section 5 of Boyd, 1999). 

This approach deserves further explorations. 
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661 Table 1. Values of E(yk) and E[N(yk)] listed in row 1 for the initial guess y0 (= yg) with k = 0 

662 and in rows 2-5 for yK from the four iterative procedures in the first set of experiments (with 

663 Ro = 0.1). Here, E(yk) is defined in (18), E[N(yk)] is defined in (13), k is the iteration number, 

664 and yK is the optimally truncated solution at k = K. 

E(yk) E[N(yk)] k 
y0 2.43´10-2 0.120 k = 0 

M1a 4.87´10-4 2.41´10-3 k = K = 6 
M1b 1.68´10-3 1.81´10-2 k = K = 38493 
M2a 4.55´10-3 3.55´10-2 k = K = 19 
M2b 2.69´10-3 2.66´10-2 k = K = 26 

665 
666 Table 2. As in Table 1 but for the second set of experiments (with Ro = 0.2). 

E(yk) E[N(yk)] k 
y0 4.86´10-2 0.243 k = 0 

M1a 1.24´10-3 5.23´10-3 k =K = 13 
M1b 5.14´10-3 2.20´10-2 k = K = 48057 
M2a 6.31´10-3 4.17´10-2 k = K = 26 
M2b 3.96´10-3 2.94´10-2 k = K = 35 

667 
668 Table 3. As in Table 1 but for the third set of experiments (with Ro = 0.4 and x0 = 0). 

E(yk) E[N(yk)] k 
y0 9.72´10-2 0.57 k = 0 

M1a 8.20´10-2 0.13 k = K = 2 
M1b 8.31´10-2 0.15 k = K = 10325 
M2a 8.25´10-2 0.11 k = K = 26 
M2b 8.26´10-2 0.10 k = K = 29 

669 
670 Table 4. As in Table 1 but for the fourth set of experiments (with Ro = 0.4 and x0 = L). 

E(yk) E[N(yk)] k 
y0 9.71´10-2 0.76 k = 0 

M1a 2.29´10-2 3.81´10-2 k = K = 7 
M1b 2.37´10-2 4.54´10-2 k=K= 31830 
M2a 3.03´10-2 5.42´10-2 k = K = 27 
M2b 2.64´10-2 4.66´10-2 k = K = 32 
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672 
673 
674 Fig. 1. (a) yt plotted by color contours every 4.0 in the unit of 106 m2s-1 and (ut, vt) plotted by 

675 black arrows over domain D º [-L ≤ x ≤ L, -L ≤ y ≤ L] with L = 2000 km for the first set of 

676 experiments. (b) As in (a) but for yg and (ug, vg) with yg º f/f and f computed from yt by 

677 setting f = fo = 10-4 s-1 as described in section 3.3. (c) Vorticity zt º Ñ2yt plotted by color 

678 contours every 0.1 in the unit of 10-4 s-1 over domain D. (d) As in (c) but for geostrophic 

679 vorticity zg º Ñ2yg. The wavering jet axis is along the green contour of yt = 0 in (a) with its 

680 ridge at x = 0 and two troughs at x = ±L on the west and east boundaries of domain D. 
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  682 
683   

684  Fig. 2.  (a) E[N(yk)]  and E(yk)  from  M1a  in the  first  set  of experiments  plotted by red and blue  

685  curves, respectively, as  functions  of  k  over the  range  of  1  ≤ k  ≤  20.  (b) As  in (a)  but  from  M1b 

686  plotted over the  range  of 1  ≤ k  ≤ 4´104.  (c) As  in (a)  but  from  M2a  plotted over the  range  of  1  

687  ≤ k  ≤ 60. (d) As  in (c)  but from M2b. In each panel, the ordinate of     E[N(yk)]  is on the left side    

688  labeled in red and the ordinate of      E(yk)  is on the right side labeled in blue.    

689    
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691 

692 Fig. 3. (a) zt plotted by color contours every 0.25 in the unit of 10-4 s-1 in domain D with L = 

693 1000 km and Ro = 0.2 for the second set of experiments . (b) As in (a) but for zg. As shown in 

694 (b), zg < -f/2 (= -fo/2) in the two small yellow colored areas where the NBE becomes locally 

695 hyperbolic. 

696 
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697 

698 Fig. 4. (a) yg plotted by color contours every 1.0 in the unit of 106 m2s-1 and (ug, vg) plotted by 

699 black arrows over domain D with L = 500 km and Ro = 0.4 for the third set of experiments. (b) 

700 As in (a) but for ε(y0) = ε(yg) plotted by color contours every 5.0 in the unit of 10-2. (c) As in 

701 (a) but for zt plotted by color contours every 0.5 in the unit of 10-4 s-1 in domain D. (d) As in 

702 (c) but for zg. As shown in (c), zt < -f in the yellow colored area south of the ridge of wavering 

703 jet axis where the jet flow becomes inertially unstable. As shown in (c), zg < -f/2 (= -fo/2) in the 

704 long and broad yellow colored area (along and around the wavering jet) where the NBE 

705 becomes hyperbolic. 
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706   
707   

708  Fig. 5.  (a) E[N(yk)] and E(yk) from  M1a  in the  third set  of experiments  plotted by red and blue  

709  curves, respectively, as  functions  of k  over the  range  of  1  ≤  k  ≤ 8,  (b)  As  in (a)  but  from  M1b 

710  plotted over the  range  of  1  ≤ k  ≤ 3´104.  (c)  As  in (a)  but  from  M2a  plotted over the  range  of  1  

711  ≤ k  ≤  60.  (d)  As  in (a)  but  from  M2b. In each panel, the  ordinates  of E[N(yk)] and  E(yk)  are  

712  placed and labeled as in Fig. 2.    
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716  Fig. 6.  ε(yK) plotted by color contours  every 0.5  in the  unit  of 10-2  for yK  from  (a) M1a, (b) 

717  M1b, (c) M2a and (d) M2b in the third set of experiments.     
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721  Fig. 7.  (a) As  in Fig. 4a  but  for yt  and (ut, vt) in the  fourth  set  of experiments  with L  = 500 km  

722  and x0  = L  (instead  of  x0  = 0).  (b) As  in (a) but  for ε(y0) = ε(yg)  plotted by color contours  every 

723  6.0 in the  unit  of 10-2.  (c) As  in (a) but  for zt  plotted by color contours  every 0.5 in the  unit  of 

724  10-4  s-1  in domain D. (d)  As in (c) but for zg.   
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728  Fig.  8.  (a) E[N(yk)] and E(yk) from  M1a  in the  fourth  set  of experiments  plotted by red and 

729  blue  curves, respectively, as  functions  of k  over the  range  of  1 ≤  k  ≤ 24, (b)  As  in (a)  but  from  

730  M1b plotted over the  range  of  1  ≤ k  ≤ 6´104.  (c) As  in (a)  but  from  M2a  plotted over the  range  

731  of 0 ≤  k  ≤  60.  (d)  As  in (a)  but  from  M2b. In each panel, the  ordinates  of E[N(yk)] and  E(yk)  

732  are placed and labeled as in Fig. 2.  
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737 Fig. 9. ε(yK) plotted by color contours every 2.0 in the unit of 10-2 for yK from (a) M1a, (b) 

738 M1b, (c) M2a and (d) M2b in the fourth set of experiments. 
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